Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Tetrapotassium $\left[\mu_{2}-N\right.$-carboxylato-D-penicillaminato(3-)-5:6 $\left.\kappa^{2} S: S\right]\left[\mu_{2^{-}}\right.$ D-penicillaminato(1-)-2:3 $\left.\kappa^{2} S: S\right]-$ tetrakis[μ_{2}-D-penicillaminato(2-)]$1: 2 \kappa^{3} N, S: S ; 1: 6 \kappa^{3} N, S: S ; 3: 4 \kappa^{3} S: N, S ;-$ 4:5 $\kappa^{3} N, S: S-2,3,5,6$-tetragold(I)-1,4dinickel(II) ethanol monosolvate decahydrate

Yuji Hashimoto, Mai Taguchi, Nobuto Yoshinari* and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

Received 3 April 2010
Accepted 6 May 2010
Online 12 May 2010
In the crystal structure of the title compound, $\mathrm{K}_{4}\left[\mathrm{Au}_{4} \mathrm{Ni}_{2}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, (I), two planar $\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\right]^{2-}$ units are spanned by $\left[\mathrm{Au}_{2}-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}\right)\right]^{+}$and $\left[\mathrm{Au}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{~S}\right)\right]^{-}$linkers through S atoms, forming an $S: S$-bridged $\mathrm{Au}_{4}^{\mathrm{I}} \mathrm{Ni}_{2}^{\mathrm{II}}$ hexanuclear complex anion. One of six organic ligands in the complex anion is a carbamino derivative of o-penicillamine (3-mercaptovaline) and the others are deprotonated d-penicillamines. Each complex anion binds to nine K^{+}ions through six carboxylate and one carbamino groups to construct a three-dimensional structure.

Comment

Carbamino derivatives of amino acids, which are formed by the reaction of an amino group with CO_{2}, are important species in biological systems because the carbamination of an N -terminal valine residue of hemoglobin is related to its CO_{2} delivery and oxygen affinity (Jensen, 2004). While the carbamino derivative of deoxyhemoglobin has been determined crystallographically by Fantl et al. (1987), the structural determination of carbaminated amino acids has been carried out only for an achiral carbaminoglycinate salt (Kovbasyuk et al., 1997).
While studying the reactivity of the 3 -mercapto derivative of valine (D -penicillamine or $\mathrm{D}-\mathrm{H}_{2}$ pen) bound to a gold(I) centre towards various metal ions (Toyota et al., 2005; Taguchi et al., 2007), we found that red crystals containing Au^{I} and $\mathrm{Ni}^{\mathrm{II}}$ atoms in a 2:1 ratio are formed when a solution containing
$\left[\mathrm{Au}(\mathrm{D}-\mathrm{pen})_{2}\right]^{3-}$ and Ni^{2+} was allowed to stand in a refrigerator for two months. We report herein the crystal structure of (I) containing a D -carbaminopenicillaminate ($\mathrm{D}-\mathrm{cp}$) ligand that bridges two Au^{1} atoms through a thiolate group. To our knowledge, this is the first example of a structurally characterized chiral carbamino amino acid bound to metal centres.

(I)

A displacement ellipsoid plot with the atom-numbering scheme of (I) is given in Fig. 1. The hexanuclear complex anion in (I) contains two $\left[\mathrm{Ni}(\mathrm{D}-\mathrm{pen})_{2}\right]^{2-}$ units, in which each $\mathrm{Ni}^{1 \mathrm{II}}$ atom is coordinated by two bidentate D -pen ligands. The two $\mathrm{Ni}^{\mathrm{II}}$ units have a slightly distorted square-planar geometry, with the dihedral angles between the Ni1/N1/S1 and Ni1/N2/S2 planes and the Ni2/N3/S3 and Ni2/N4/S4 planes being 10.3 (2) and $6.1(2)^{\circ}$, respectively. All d-pen N, S-chelate

Figure 1
A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level and H atoms have been omitted for clarity. The thin lines indicate $\mathrm{Au} \cdots \mathrm{Au}$ interactions.
rings in the $\mathrm{Ni}^{\mathrm{II}}$ units adopt a δ conformation, as found in bis(D-penicillaminato)nickelate(II) (Baidya et al., 1991). In (I), the two $\mathrm{Ni}^{\mathrm{II}}$ units are spanned by two digold(I) linkers, viz. $\left[\mathrm{Au}_{2}(\mathrm{D}-\mathrm{Hpen})\right]^{+}$and $\left[\mathrm{Au}_{2}(\mathrm{D}-\mathrm{cp})\right]^{-}$, forming an $S: S$-bridged hexanuclear structure in $\left\{\left[\mathrm{Au}_{2}(\mathrm{D}-\mathrm{cp})\right]\left[\mathrm{Au}_{2}(\mathrm{D}-\mathrm{Hpen})\right][\mathrm{Ni}(\mathrm{D}-\right.$ pen $\left.)_{2}\right]_{2} 3^{4-}$ with a 12 -membered $\mathrm{Au}_{4}^{\mathrm{I}} \mathrm{Ni}_{2}^{\mathrm{II}} \mathrm{S}_{6}$ metallo-ring. One of the digold(I) linkers contains a d-Hpen ligand that bridges two Au^{I} atoms through S atoms, while its amino group is in a protonated form $\left(\mathrm{NH}_{3}{ }^{+}\right)$and is not involved in the coordination. The other digold(I) linker possesses D-cp, in place of d-Hpen, as a bridging ligand, which is considered to be

Figure 2
A view of the intramolecular hydrogen bonds and aurophilic interactions in (I). Dotted and dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{Au} \cdots \mathrm{Au}$ interactions, respectively.

Figure 3
A view of the two-dimensional layer structure of complex anions in (I). Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. K^{+}ions, solvent molecules and H atoms have been omitted for clarity.

Figure 4
A view of the three-dimensional network structure of complex anions connected by K^{+}ions in (I).
produced by the reaction of D-pen with $\mathrm{CO}_{3}{ }^{2-}$. A carbamino N atom of the D-cp ligand is in a trigonal planar geometry and the $\mathrm{C}-\mathrm{N}$ bond $[\mathrm{C} 31-\mathrm{N} 6=1.383(8) \AA$] is obviously shorter than normal $\mathrm{C}-\mathrm{N}$ single bonds. In addition, the carbamino and N -carboxylate groups lie roughly on the same plane; the dihedral angle between the $\mathrm{N} 6 / \mathrm{C} 27 / \mathrm{H} 6$ and $\mathrm{C} 31 / \mathrm{O} 13 / \mathrm{O} 14$ planes is $9.0(8)^{\circ}$. This is indicative of the spreading of π conjugation over the carbamino and the N-carboxylate groups. A similar structural feature has been observed for previously reported carbamino compounds (e.g. Garbauskas et al., 1983; Schmitt et al., 2002; Shi et al., 2006). It is noted that the carboxylate groups of D -Hpen and the N -carboxylate of D-cp form intramolecular hydrogen bonds with amine groups bound to $\mathrm{Ni}^{\mathrm{II}}$ atoms $[\mathrm{N} 1 \cdots \mathrm{O} 10=2.825(7) \AA, \mathrm{N} 2 \cdots \mathrm{O} 9=$ 2.960 (6) $\AA, \quad \mathrm{N} 3 \cdots \mathrm{O} 14=2.867(6) \AA$ and $\mathrm{N} 4 \cdots \mathrm{O} 14=$ 2.934 (6) A] (Fig. 2). Furthermore, there is an intramolecular aurophilic interaction (Schmidbaur \& Schier, 2008) between Au^{I} atoms with distances of $\mathrm{Au} 1 \cdots \mathrm{Au} 2=3.0635$ (5) \AA, $\mathrm{Au} 1 \cdots \mathrm{Au} 4=3.1730$ (6) \AA and $\mathrm{Au} 3 \cdots \mathrm{Au} 4=3.0542$ (5) \AA (Fig. 2). These attractive interactions appear to sustain this unique hexanuclear structure in (I).

In (I), each complex anion is connected to four neighbouring complex anions through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between amine or ammonium groups and carboxylate groups $\left[\mathrm{N} 1 \cdots \mathrm{O}^{\mathrm{i}}=3.013(6) \AA, \quad \mathrm{N} 4 \cdots \mathrm{O} 4^{\mathrm{iii}}=3.004\right.$ (6) \AA and $\mathrm{N} 5 \cdots \mathrm{O} 2^{\mathrm{v}}=2.816(6) \AA$; symmetry codes and geometric parameters are given in Table 1], forming a two-dimensional layer structure in the $a b$ plane (Fig. 3). In addition, the layers are connected with each other through $\mathrm{K}-\mathrm{O}_{\text {carboxylate }}$ coordination bonds $[2.629$ (4)-3.192 (5) \AA] to give a three-dimensional network structure (Fig. 4). Besides carboxylate groups, some water and ethanol solvent molecules coordinate to K^{+} ions $[2.732$ (6)-2.918 (7) A]. All of the water and ethanol molecules participate in the formation of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with carboxylate groups, water molecules, and/or ethanol molecules in the $\mathrm{O} \cdots \mathrm{O}$ distance range of 2.662 (7)3.187 (7) Å (Table 1).

Experimental

A solution of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.013 \mathrm{~g}, 0.04 \mathrm{mmol})$ in ethanol $(6 \mathrm{ml})$ was layered on to a colourless solution of $\mathrm{NH}_{4}\left[\mathrm{Au}(\mathrm{D}-\mathrm{Hpen})_{2}\right] \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$ ($0.050 \mathrm{~g}, 0.09 \mathrm{mmol}$) (LeBlanc et al., 1997; Konno et al., 2009) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.024 \mathrm{~g}, 0.18 \mathrm{mmol})$ in water $(1 \mathrm{ml})$ in a test tube $(1.5 \times$ 10 cm) and the resulting mixture was left in a refrigerator for two months. Red plate-shaped crystals of (I) formed and were collected by filtration. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $1593\left(s, v_{\mathrm{as}}\right.$ of $\left.\mathrm{OCO}^{-}\right)$.

Crystal data

$\mathrm{K}_{4}\left[\mathrm{Au}_{4} \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{~S}\right)\right.$ -
 $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10^{-}}\right.$
 $\left.\left.\mathrm{NO}_{2} \mathrm{~S}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
 $M_{r}=2214.06$
 Monoclinic, $P 2_{1}$
 $a=9.9638(18) \AA$
 $b=22.644$ (4) \AA
 $c=14.723$ (3) \AA
 Data collection
 Rigaku R-AXIS RAPID
 diffractometer
 Absorption correction: multi-scan
 (ABSCOR; Higashi, 1995)
 $T_{\text {min }}=0.316, T_{\text {max }}=0.691$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.064$
$S=1.04$
17713 reflections
804 parameters
49 restraints
$\beta=97.998(7)^{\circ}$
$V=3289.5(10) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=9.97 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.15 \times 0.15 \times 0.04 \mathrm{~mm}$

38154 measured reflections 17713 independent reflections 16029 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=1.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{-3}$
Absolute structure: Flack (1983) 8079 Friedel pairs
Flack parameter: -0.005 (3)

H atoms bound to C and N atoms were placed at calculated positions $\left[\mathrm{C}-\mathrm{H}=0.98\left(\mathrm{CH}_{3}\right), 0.99\left(\mathrm{CH}_{2}\right)\right.$ or $1.00 \AA(\mathrm{CH})$ and $\mathrm{N}-\mathrm{H}=0.91\left(\mathrm{NH}_{3}{ }^{+}\right), 0.92\left(\mathrm{NH}_{2}\right)$ or $\left.0.88 \AA(\mathrm{NH})\right]$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for $\mathrm{CH}_{2}, \mathrm{CH}, \mathrm{NH}_{2}$ and NH , and $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for CH_{3} and $\mathrm{NH}_{3}{ }^{+}$. Each of two ethanol solvent molecules shares the same site with a water molecule, and these disordered molecules were refined with occupancies of 0.5 . Water and Obound H atoms of ethanol molecules were placed so as to form reasonable hydrogen bonding, except for two H atoms of disordered water molecules that were not included in the model. All H atoms bound to O atoms were refined with restrained geometric and displacement parameters $[\mathrm{O}-\mathrm{H}=0.85(5) \AA, \mathrm{H} \cdots \mathrm{H}=1.38$ (5) \AA and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$. In addition, 14 H atoms (H15A, H15B, $\mathrm{H} 16 B, \mathrm{H} 17 A, \mathrm{H} 18 A, \mathrm{H} 18 B, \mathrm{H} 19 A, \mathrm{H} 21 A, \mathrm{H} 21 B, \mathrm{H} 22 B, \mathrm{H} 23 A$, $\mathrm{H} 23 B$, H 24 and H 25) were refined with additional intermolecular $\mathrm{H} \cdots \mathrm{O}$ distance restraints of $1.90(5) \AA$ or $\mathrm{H} \cdots \mathrm{H}$ antibumping restraints of 2.30 (5) \AA so as to form reasonable hydrogen bonding.

Data collection and cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[^0]Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A \cdots O10	0.92	2.04	2.825 (7)	143
N1-H1B $\cdots \mathrm{O}^{\text {i }}$	0.92	2.10	3.013 (6)	172
N2-H2B \cdots O9	0.92	2.06	2.960 (6)	167
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 18^{\text {ii }}$	0.92	2.03	2.929 (8)	167
N3-H3B $\cdots \mathrm{O} 14$	0.92	2.08	2.867 (6)	143
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 14$	0.92	2.20	2.934 (6)	136
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 4{ }^{\text {iii }}$	0.92	2.13	3.004 (6)	157
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 20^{\text {iv }}$	0.91	1.87	2.768 (7)	169
N5-H5B...O15 ${ }^{\text {iv }}$	0.91	2.09	2.979 (7)	164
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.91	1.97	2.816 (6)	154
O15-H15A \cdots O8	0.83 (3)	2.05 (3)	2.791 (6)	148 (6)
O15-H15B \cdots O11	0.86 (4)	1.95 (3)	2.686 (7)	143 (6)
$\mathrm{O} 16-\mathrm{H} 16 A \cdots \mathrm{O} 20^{\text {vi }}$	0.86 (4)	1.97 (4)	2.820 (7)	169 (8)
O16-H16B $\cdots \mathrm{O} 25$	0.89 (4)	2.01 (4)	2.801 (10)	146 (6)
$\mathrm{O} 17-\mathrm{H} 17 A \cdots \mathrm{O}^{\text {vii }}$	1.02 (3)	2.64 (7)	3.187 (7)	113 (5)
$\mathrm{O} 17-\mathrm{H} 17 B \cdots \mathrm{O} 12^{\text {vi }}$	0.82 (4)	2.06 (5)	2.751 (7)	142 (7)
$\mathrm{O} 18-\mathrm{H} 18 A \cdots \mathrm{O} 22^{\text {viii }}$	0.86 (3)	1.98 (3)	2.773 (9)	153 (5)
$\mathrm{O} 18-\mathrm{H} 18 B \cdots \mathrm{O} 23^{\text {viii }}$	0.93 (3)	2.08 (4)	2.958 (10)	156 (7)
$\mathrm{O} 19-\mathrm{H} 19 A \cdots \mathrm{O}^{\text {iii }}$	0.92 (4)	1.90 (4)	2.697 (8)	144 (7)
O19-H19B $\cdots \mathrm{O} 21^{\text {ii }}$	0.95 (4)	1.89 (5)	2.799 (7)	161 (7)
$\mathrm{O} 20-\mathrm{H} 20 A \cdots \mathrm{O} 14$	0.80 (4)	1.89 (4)	2.662 (7)	165 (7)
$\mathrm{O} 20-\mathrm{H} 20 B \cdots \mathrm{O} 23$	0.85 (4)	1.90 (4)	2.734 (8)	167 (7)
$\mathrm{O} 21-\mathrm{H} 21 A \cdots \mathrm{O} 5^{\text {ix }}$	0.97 (3)	1.89 (3)	2.791 (8)	154 (6)
$\mathrm{O} 21-\mathrm{H} 21 B \cdots \mathrm{O} 11$	0.83 (3)	1.97 (3)	2.763 (7)	160 (7)
$\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O} 7$	0.82 (4)	2.07 (6)	2.817 (7)	151 (9)
$\mathrm{O} 22-\mathrm{H} 22 B \cdots \mathrm{O} 19$	0.83 (3)	1.96 (3)	2.766 (8)	163 (7)
$\mathrm{O} 23-\mathrm{H} 23 A \cdots \mathrm{O} 24^{\mathrm{ii}}$	0.92 (4)	2.00 (4)	2.787 (9)	142 (6)
$\mathrm{O} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{O} 21^{\mathrm{x}}$	0.83 (4)	1.96 (7)	2.754 (9)	158 (8)
$\mathrm{O} 24-\mathrm{H} 24 \cdots \mathrm{O} 2^{\text {vi }}$	0.83 (4)	2.00 (4)	2.778 (7)	154 (7)
$\mathrm{O} 25-\mathrm{H} 25 \cdots \mathrm{O} 2^{\text {vii }}$	0.90 (4)	1.99 (4)	2.792 (9)	149 (8)

Symmetry codes: (i) $-x, y-\frac{1}{2},-z$; (ii) $-x, y+\frac{1}{2},-z+1$; (iii) $-x, y+\frac{1}{2},-z$; (iv) $x, y, z-1$; (v) $x+1, y, z$; (vi) $x-1, y, z$; (vii) $x, y, z+1$; (viii) $-x, y-\frac{1}{2},-z+1$; (ix) $-x+1, y-\frac{1}{2},-z+1 ;(\mathrm{x})-x+1, y+\frac{1}{2},-z+1$.

References

Baidya, N., Olmstead, M. M. \& Mascharak, P. K. (1991). Inorg. Chem. 30, 3967-3969.
Fantl, W. J., Donato, A. D., Manning, J. M., Rogers, P. H. \& Arnone, A. (1987). J. Biol. Chem. 262, 12700-12713.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Garbauskas, M. F., Goehner, R. P. \& Davis, A. M. (1983). Acta Cryst. C39, 1684-1686.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Jensen, F. B. (2004). Acta Physiol. Scand. 182, 215-227.
Konno, T., Toyota, A. \& Igashira-Kamiyama, A. (2009). J. Chin. Chem. Soc. 56, 26-33.
Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. \& Iskenderov, T. S. (1997). Polyhedron, 16, 1723-1729.
LeBlanc, D. J., Britten, J. F., Wang, Z., Howard-Lock, H. E. \& Lock, C. J. L. (1997). Acta Cryst. C53, 1763-1765.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453457.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Schmidbaur, H. \& Schier, A. (2008). Chem. Soc. Rev. 37, 1931-1951.
Schmitt, W., Anson, C. E., Sessoli, R., Veen, M. \& Powell, A. K. (2002). J. Inorg. Biochem. 91, 173-189.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, P.-F., Xu, T.-T., Xu, X.-Y. \& Niu, S.-R. (2006). Acta Cryst. E62, $05191-$ 05193.

Taguchi, M., Igashira-Kamiyama, A., Kajiwara, T. \& Konno, T. (2007). Angew. Chem. Int. Ed. 46, 2422-2425.
Toyota, A., Yamaguchi, T., Igashira-Kamiyama, A., Kawamoto, T. \& Konno, T. (2005). Angew. Chem. Int. Ed. 44, 1088-1092.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: LG3031). Services for accessing these data are described at the back of the journal.

